22 research outputs found

    A ceaseless becoming : narratives of adolescence across media

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Comparative Media Studies, 2007.Includes bibliographical references (p. 97-105).Thesis explores the broad appeal of narratives with adolescent protagonists across a variety of media, including literature, film, and video games. An analysis of key texts within their historical contexts reveals affinities between disparate genres and strong connections between fiction and the discourse of adolescence in psychology, anthropology, and sociology. Adolescence narratives illuminate both the transgressive boundaries of a given culture and the normative center, and make explicit what is usually considered natural or implicit. To discover the roots of contemporary adolescence narratives, prototypes for the picaresque novel, the school story, and the Bildungsroman are examined, and each are shown to contain narrative conventions that survive in recent works. A contemporary case study looks at the trilogy of female coming of age films by Sofia Coppola to show how they embody the ambiguities and contradictions of third wave feminism. Finally, the author explores the affinity between video games and adolescence, the implications of translating literary genres into an interactive medium, and uses examples from both science fiction literature and recent games to theorize how games might better address the themes of adolescence in both story and play mechanics.by Neal A. Grigsby.S.M

    Our Space: Being a Responsible Citizen of the Digital World

    Get PDF
    Our Space is a set of curricular materials designed to encourage high school students to reflect on the ethical dimensions of their participation in new media environments. Through role-playing activities and reflective exercises, students are asked to consider the ethical responsibilities of other people, and whether and how they behave ethically themselves online. These issues are raised in relation to five core themes that are highly relevant online: identity, privacy, authorship and ownership, credibility, and participation.Our Space was co-developed by The Good Play Project and Project New Media Literacies (established at MIT and now housed at University of Southern California's Annenberg School for Communications and Journalism). The Our Space collaboration grew out of a shared interest in fostering ethical thinking and conduct among young people when exercising new media skills

    Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions

    Full text link
    The osmotic virial coefficient B2B_2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the ``primitive model''. The salt and counter-ions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2B_2 first decreases with added salt concentration up to a threshold concentration, then increases to a maximum, and then decreases again upon further raising the ionic strength. Our studies demonstrate that the existence of a discrete charge pattern on the protein surface profoundly influences the effective interactions and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory fail for large ionic strength. The observed non-monotonicity of B2B_2 is compared to experiments. Implications for protein crystallization are discussed.Comment: 43 pages, including 17 figure

    Hydration and Hydrodynamic Interactions of Lysozyme: Effects of Chaotropic versus Kosmotropic Ions

    Get PDF
    Using static and dynamic light scattering we have investigated the effects of either strongly chaotropic, nearly neutral or strongly kosmotropic salt ions on the hydration shell and the mutual hydrodynamic interactions of the protein lysozyme under conditions supportive of protein crystallization. After accounting for the effects of protein interaction and for changes in solution viscosity on protein diffusivity, protein hydrodynamic radii were determined with ±0.25 Å resolution. No changes to the extent of lysozyme hydration were discernible for all salt-types, at any salt concentration and for temperatures between 15–40°C. Combining static with dynamic light scattering, we also investigated salt-induced changes to the hydrodynamic protein interactions. With increased salt concentration, hydrodynamic interactions changed from attractive to repulsive, i.e., in exact opposition to salt-induced changes in direct protein interactions. This anti-correlation was independent of solution temperature or salt identity. Although salt-specific effects on direct protein interactions were prominent, neither protein hydration nor solvent-mediated hydrodynamic interactions displayed any obvious salt-specific effects. We infer that the protein hydration shell is more resistant than bulk water to changes in its local structure by either chaotropic or kosmotropic ions

    Liquid-Liquid Phase Separation of a Monoclonal Antibody and Nonmonotonic Influence of Hofmeister Anions

    Get PDF
    Liquid-liquid phase separation was studied for a monoclonal antibody in the monovalent salt solutions of KF, KCl, and KSCN under different pH conditions. A modified Carnahan-Starling hard-sphere model was utilized to fit the experimental data, establish the liquid-liquid coexistence curve, and determine antibody-antibody interactions in the form of Tc (critical temperature) under the different solution conditions. The liquid-liquid phase separation revealed the complex relationships between antibody-antibody interactions and different solution conditions, such as pH, ionic strength, and the type of anion. At pH 7.1, close to the pI of the antibody, a decrease of Tc versus ionic strength was observed at low salt conditions, suggesting that the protein-protein interactions became less attractive. At a pH value below the pI of the antibody, a nonmonotonic relationship of Tc versus ionic strength was apparent: initially as the ionic strength increased, protein-protein interactions became more attractive with the effectiveness of the anions following the inverse Hofmeister series; then the interactions became less attractive following the direct Hofmeister series. This nonmonotonic relationship may be explained by combining the charge neutralization by the anions, perhaps with the ion-correlation force for polarizable anions, and their preferential interactions with the antibody
    corecore